UNIVERSITÉ DU QUÉBEC À MONTRÉAL

UTILISATION D’UN MODÈLE COLONNE DANS L’ÉTUDE DES
CHANGEMENTS CLIMATIQUES DU RÉGIME THERMIQUE DU SOL DE LA RÉGION
NORD-EST DU CANADA

MÉMOIRE
PRÉSENTÉ
COMME EXIGENCE PARTIELLE
DE LA MAÎTRISE EN SCIENCES DE L’ATMOSPHÈRE

PAR

IVANA POPADIĆ

MARS 2006
REMERCIEMENTS

Je tiens tout d’abord à remercier mon directeur de recherche, M. René Laprise, de m’avoir donné l’opportunité de réaliser ce projet, ainsi que de son dévouement et de ses conseils judicieux. Je voudrais aussi remercier ma codirectrice de recherche, Mme Laxmi Sushama, de son appui constant au cours de toute cette période. Son professionnalisme, sa disponibilité et sa générosité, tant sur le plan scientifique qu’humain, ont beaucoup facilité mon travail.

Je voudrais remercier toutes les personnes du groupe de Sciences de l’Atmosphère de l’UQAM et d’Ouranos qui m’ont offert leur soutien pendant la réalisation de ce travail. Je suis également reconnaissante envers l’équipe de simulations climatiques à Ouranos qui m’a fourni des données du MRCC essentielles à mon étude. Je dois mentionner le travail qu’a accompli Mme Anne Frigon et M. Frédéric Guay pour nous faciliter la tâche. De plus, je remercie M. Michel Allard, professeur à l’Université Laval, pour ses conseils et pour avoir rendu disponibles les données d’observations prises par le Centre d’études nordiques. Je ne voudrais pas oublier le réseau canadien de modélisation régionale du climat, la Fondation canadienne pour les sciences du climat et de l’atmosphère et le Consortium Ouranos, pour leur appui financier. Un merci très sincère à M. Yanjun Jiao pour avoir toujours répondu à mes nombreuses questions.

J’aimerais dire merci à mes collègues, les étudiants du groupe des Sciences de l’Atmosphère de l’UQÀM, pour leur appui tout au long de ces deux années. Un
remerciement spécial à Erica, Yan et Raphaël qui étaient toujours disponibles pendant mes études, pour corriger mes documents en langue française. Finalement, je voudrais profondément remercier mes amies Irena, Dragana, Djordje, Sladja et Radenko, pour leur écoute, leur optimisme et leurs encouragements au cours de mes études de maîtrise.

En terminant, un grand merci pour ma famille : mon père Miloje, ma mère Ksenija, ma sœur Ana et mon mari Marko. Votre chaleur, votre générosité et vos nombreux encouragements m’ont toujours facilité la vie, dans n’importe quel domaine. MERCI BEAUCOUP À VOUS QUI M’ÊTES SI CHERS!!!
TABLE DES MATIÈRES

REMERCIEMENTS ... II

LISTE DES FIGURES .. VI

LISTE DES TABLEAUX .. IX

LISTE DES ACRONYMES ... X

LISTE DES SYMBOLES .. XI

RÉSUMÉ .. XIII

INTRODUCTION .. 1

1. DESCRIPTION DU MODÈLE « TONE » .. 11

2. VALIDATION DU MODÈLE .. 16

 2.1. Comparaison entre les solutions analytique et numérique 16

 2.1.1. Solution analytique ... 16

 2.1.2. Solution analytique vs numérique ... 19
LISTE DES FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.2.</td>
<td>La distribution du pergélisol mondialement, au Canada et au Québec, respectivement.</td>
</tr>
<tr>
<td>I.3</td>
<td>Les termes utilisés pour décrire le sol pergélisolé (Allard et al., 1989)</td>
</tr>
<tr>
<td>2.1.</td>
<td>Comparaison entre les solutions analytique et numérique d’un profil de température du sol à un temps spécifique au moment où la perturbation de la température à la surface passe par zéro.</td>
</tr>
<tr>
<td>2.2.</td>
<td>Comparaison entre les solutions analytique et numérique des températures du sol pendant un an.</td>
</tr>
<tr>
<td>2.3 a)</td>
<td>Température de l’air à la surface et b) épaisseur de neige.</td>
</tr>
<tr>
<td>2.4</td>
<td>Enveloppes pour la simulation sans neige (les lignes pleines) et avec la couverture de neige (les lignes tiretées). Les températures minimales pour un cycle annuel sont montrées en bleu, les températures maximales en rouge et les températures moyennes en noire.</td>
</tr>
<tr>
<td>2.5 a)</td>
<td>Température de l’air à la surface et b) épaisseur de neige; la couverture de neige présentée avec les lignes pleines est deux fois plus petite que la couverture présentée avec les lignes tiretées.</td>
</tr>
<tr>
<td>2.6</td>
<td>Enveloppes pour la simulation sans neige (les lignes pleines), avec la couverture de neige jusqu’à 0.25m (les lignes pointées) et avec la couverture de neige jusqu’à 0.5m (les lignes tiretées). Les températures minimales pour un cycle annuel sont montrées en bleu, les températures maximales en rouge et les températures moyennes en noire.</td>
</tr>
<tr>
<td>2.7 a)</td>
<td>Température de l’air à la surface et b) épaisseur de neige.</td>
</tr>
<tr>
<td>2.8</td>
<td>Enveloppes pour la simulation avec le pergélisol. La ligne noire pleine sépare la zone de pergélisol et la zone de la couche active.</td>
</tr>
</tbody>
</table>
Figure 2.9 Enveloppes pour la simulation avec le sable (les lignes droites) et avec l’argile (les lignes tiretées); la neige est présente. 33

Figure 2.10 a) Enveloppes pour la simulation avec des conductivités de 0,30W/mK (les lignes bleues), de 3,01W/mK (les lignes cyans), et de 30,01W/MK (les lignes rouges); b) Température moyenne annuelle du sol pour les différentes conductivités. 34

Figure 2.11 Enveloppes pour la simulation avec les flux à la frontière inférieure de 0,063 W/m² (les lignes pleines), de 0,000 W/m² (les lignes tiretées), et de -0,063W/m² (les lignes avec les triangles). 35

Figure 1. Geographic extent of the computational domain with topographic height (in meters). 58

Figure 2. Biases in the mean annual screen temperature for (a) NCEP/NCAR reanalysis and (b) CRCM simulation driven by CGCM2 compared with CRU analysis of surface observations, for the period 1961–1990. 59

Figure 3. Biases in the (a) winter and (b) summer screen temperature for NCEP/NCAR reanalysis compared with CRU analysis of surface observations, for the period 1961–1990. 59

Figure 4. (a) CRCM simulated and (b) analyzed (Brown et al., 2003) mean winter (DJF) snow water equivalent (kg/m²) for the period 1979-1990 and (c) their differences. 61

Figure 5. Simulated (SM_NCEP and SM_CRCM1) and observed temperature profiles for a typical winter (left panels) and summer (right panels) day for (a) Salluit (SAL), (b) Kangiqsualuujuaq (KGSLJQ) and (c) Tasiujaq (TSJQ). The days correspond to 31 January and 19 August 1988 for Salluit, 19 February and 20 August 1990 for Kangiqsualuujuaq and 23 February and 20 August 1990 for Tasiujaq. 62

Figure 6. (a) Screen temperature (in °C) and (b) snow water depth (in m) for Salluit (left panel), Kangiqsualuujuaq (middle panel) and Tasiujaq (right panel). 63

Figure 7. (a) Corrected SM_NCEP (black) and observed (colored) soil temperature profiles for Salluit for 31 January 1988 and 19 August 1988 day and (b) scatter plot of simulated vs observed soil temperature at 400 cm below surface. 64

Figure 8. (a) SM_NCEP and (b) SM_CRCM1 simulated active layer thickness (in m) for the periods 1979–1990 and 1961–1990, respectively. Shown superposed are the lines delineating continuous, discontinuous and sporadic permafrost zones taken from the IPA map (Brown et al., 2001).
The panel (c) is the same as (b), but including the “quasi” permafrost region.

Figure 9. Projected changes simulated by CRCM driven by CGCM2 for (a) annual average surface air temperature (in °C) and (b) winter (DJF) snow water equivalent (in kg/m²) for future IS92a SRES scenario (2041–2070) compared with that for current climate (1961–1990).

Figure 10. Estimated trends (top rows) and p-values (bottom rows) in (a) surface air temperature (in °C/year) and (b) snow water equivalent (in kg/m²) for current (left panels) and future (right panels) climates.

Figure 11. Estimated trends in (a) thawing and (b) freezing indices (degree days/year) and (c) in the simulated soil temperature (in °C/year) at 20 cm depth for current (left panels) and future (right panels) climates.

Figure 12. p-values for (a) thawing and (b) freezing indices and (c) for simulated soil temperature at 20 cm depth for current (left panels) and future (right panels) climates.

Figure 13. Changes in the (a) winter (DJF) minimum and (b) summer (JJA) maximum soil temperatures (in °C) at 20 cm depth for the future climate compared with that of current climate.

Figure 14. Changes in mean monthly soil temperature (in °C) at 20 cm depth for the period 2041-2070 compared to the period 1961–1990.

Figure 15. Changes in mean monthly snow water equivalent (in kg/m²) for the period 2041-2070 compared to the period 1961-1990.

Figure 16. Average annual (a) mean (b) minimum and (c) maximum temperature profiles for current (solid lines) and future (dashed lines) climates for continuous, discontinuous, sporadic and isolated permafrost regions defined by the IPA map.

Figure 17. Estimated trends (10^{-2}°C/year) in the average (a) annual mean (b) minimum and (c) maximum temperature profiles for current (solid lines) and future (dashed lines) climates for continuous (left column), discontinuous (second column), sporadic (third column) and isolated (fourth column) permafrost regions defined by the IPA map. Filled (empty) circles suggest significant (nonsignificant) trends at 90% confidence level.

Figure 18. SM_CRCM2 simulated ALT (in m) for future scenario (2041–2070), for the continuous permafrost region. Shown superposed are the lines delineating continuous, discontinuous and sporadic permafrost zones taken from the IPA map (Brown et al., 2001).
LISTE DES TABLEAUX

<table>
<thead>
<tr>
<th>Tableau</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tableaux 2.1 Propriétés du matériel supposées dans la simulation du modèle</td>
<td>22</td>
</tr>
<tr>
<td>Tableaux 2.2 Propriétés de l’argile et du sable considérées dans la simulation du modèle</td>
<td>25</td>
</tr>
</tbody>
</table>
LISTE DES ACRONYMES

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT</td>
<td>Active layer thickness</td>
</tr>
<tr>
<td>CRCM</td>
<td>Canadian Regional Climate Model</td>
</tr>
<tr>
<td>CRU</td>
<td>Climatic Research Unit</td>
</tr>
<tr>
<td>DJF</td>
<td>December-January-February</td>
</tr>
<tr>
<td>GCM</td>
<td>General Circulation Model</td>
</tr>
<tr>
<td>IPA</td>
<td>International Permafrost Association</td>
</tr>
<tr>
<td>JJA</td>
<td>June-July-August</td>
</tr>
<tr>
<td>MCG</td>
<td>Modèles de Circulation Générale</td>
</tr>
<tr>
<td>MRC</td>
<td>Modèles Régionaux du Climat</td>
</tr>
<tr>
<td>MRCC</td>
<td>Modèle Régional Canadien du Climat</td>
</tr>
<tr>
<td>NCEP/NCAR</td>
<td>National Centers for Environmental Prediction/National Center for Atmospheric Research</td>
</tr>
<tr>
<td>RCM</td>
<td>Regional Climate Model</td>
</tr>
<tr>
<td>SRES</td>
<td>Special Report on Emission Scenarios</td>
</tr>
<tr>
<td>UQAM</td>
<td>Université de Québec à Montréal</td>
</tr>
</tbody>
</table>
LISTE DES SYMBOLES

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1, a_2, et a_3</td>
<td>Constantes complexes</td>
</tr>
<tr>
<td>c</td>
<td>Capacité de chaleur par unité de masse</td>
</tr>
<tr>
<td>c_{ef}</td>
<td>Capacité de chaleur effective</td>
</tr>
<tr>
<td>c_F</td>
<td>Capacité calorifique de gel</td>
</tr>
<tr>
<td>c_T</td>
<td>Capacité calorifique de dégel</td>
</tr>
<tr>
<td>F_{bottom}</td>
<td>Flux à la limite inférieure</td>
</tr>
<tr>
<td>i</td>
<td>Nœud d’une couche à la verticale</td>
</tr>
<tr>
<td>L_V</td>
<td>Chaleur latente de fusion</td>
</tr>
<tr>
<td>m</td>
<td>Temps</td>
</tr>
<tr>
<td>k</td>
<td>Conductivité thermique</td>
</tr>
<tr>
<td>k_F</td>
<td>Conductivité thermique du sol gelé</td>
</tr>
<tr>
<td>k_n</td>
<td>Conductivité de la neige</td>
</tr>
<tr>
<td>k_T</td>
<td>Conductivité thermique du sol dégelé</td>
</tr>
<tr>
<td>t</td>
<td>Temps</td>
</tr>
<tr>
<td>T</td>
<td>Température</td>
</tr>
<tr>
<td>T_0</td>
<td>Température initiale</td>
</tr>
<tr>
<td>T_f</td>
<td>Température de congélation</td>
</tr>
<tr>
<td>W</td>
<td>Contenu en eau du sol</td>
</tr>
<tr>
<td>Symbol</td>
<td>French Term</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>x, y, z</td>
<td>Coordonnées cartésiennes x, y, z</td>
</tr>
<tr>
<td>α</td>
<td>Diffusivité thermique</td>
</tr>
<tr>
<td>Δt</td>
<td>Pas de temps</td>
</tr>
<tr>
<td>ΔT</td>
<td>Intervalle de la température</td>
</tr>
<tr>
<td>Δz</td>
<td>Profondeur d’une certaine couche</td>
</tr>
<tr>
<td>ϵ_{min}</td>
<td>Nombre de Fourier minimal</td>
</tr>
<tr>
<td>ρ</td>
<td>Densité</td>
</tr>
<tr>
<td>ρ_c</td>
<td>Capacité volumétrique de chaleur</td>
</tr>
<tr>
<td>ρ_n</td>
<td>Densité de neige.</td>
</tr>
</tbody>
</table>
Au cours de la dernière décennie, on a observé une augmentation de la température de l’air aux latitudes nordiques. La plupart des études suggèrent que cette tendance continuera dans l’avenir, en réponse aux changements anthropiques du climat. Ce réchauffement climatique peut causer la fonte du pergélisol avec beaucoup de conséquences néfastes sur les systèmes socio-économiques et environnementaux. Un modèle de conductivité de la chaleur, prenant en compte les changements de phase, a été utilisé pour calculer les effets des facteurs climatologiques sur les processus thermiques du sol, particulièrement sur le pergélisol et la couche active. L’étude du régime thermique se concentre sur la région du nord-est du Canada pour le climat actuel (1961-1990) et pour le climat futur (2041-2070). Le modèle de sol a été piloté par les données simulées par le Modèle Régional Canadien du Climat, MRCC. Les températures du sol simulées pour le climat actuel montrent une bonne concordance avec celles observées. Les résultats suggèrent une augmentation significative de l’épaisseur de la couche active pour la période de 2041 à 2071, à partir de 40% jusqu’à 80% par rapport à celle d’aujourd’hui. Mais, les variations ne sont pas uniformes ni dans le temps ni géographiquement. Également, les résultats suggèrent le déplacement vers le nord du pergélisol discontinu, sporadique et isolé dans le futur.

Mots clés: régime thermique du sol, épaisseur de la couche active, pergélisol, changement climatique.
INTRODUCTION

Les premières informations sur le sol gelé ont été obtenues au cours de l’année 1838 par Baer, l'académicien russe, qui a rapporté que la terre en Sibérie centrale était gelée à une profondeur de plus de 100 m (Nelson, 2003). Le dégel d’une partie de ces terres a créé des dommages aux installations militaires et aux routes, ce qui a mené au développement rapide d’une littérature sur le pergélisol, dès les années 1940. Le pergélisol, par définition, c’est le sol (ou la roche) qui se maintient à une température inférieure ou égale à 0ºC pendant au moins deux années consécutives (C.A.R.G., 1988). La plupart des pergélisols existent cependant depuis beaucoup plus longtemps. Étant donné que le pergélisol est un phénomène thermique du sol, son existence dépend du climat. Dans la dernière décennie, on a observé une augmentation de la température de l’air aux hautes latitudes (ex. ACIA, 2005, Serreze et al., 2000). Également, beaucoup d’études suggèrent que cette tendance se poursuivra dans l’avenir, en réponse aux changements anthropiques du climat (ACIA, 2005). Par conséquent, le régime thermique du sol sera grandement touché et réduira la zone du pergélisol. Une hausse de la température de surface provoquera la diminution de l’épaisseur du pergélisol aussi bien que l’épaississement de la couche active, la couche de terrain située entre la surface et le pergélisol et dont le dégel a lieu chaque été et le gel chaque automne. Si la glace dans le sol fond, l’eau occupera moins de volume que la glace même et créera ainsi un espace vide qui engendrera l’effondrement du sol du dessus. Les conséquences néfastes associées à ces événements futurs se répercutent déjà aujourd’hui. Les routes se détruisent, la canalisation et les édifices s’endommagent ou s’inclinent selon certains angles… (voir Figure I.1). Les déplacements et les transports peuvent devenir plus difficiles,
particulièrement dans les zones desservies par les routes d'hiver qui profitent de la stabilité de la terre gelée. Avec l'augmentation de la température, les périodes où les routes peuvent être utilisées deviennent plus courtes. Par exemple, sur les pistes d'atterrissage et les chemins d'accès aux aéroports situés dans le Nord du Québec, on observe présentement des affaissements localisés, le plus souvent en bordure des pistes, mais parfois sur toute la largeur de la piste ou de la route. Ces affaissements ont été observés très souvent sur des remblais de faibles épaisseurs, mais également sur des remblais d'épaisseurs importantes (de 5 à 8 m). Parfois, les dépressions atteignent le milieu de la piste ou de la route et même traversent complètement ces dernières. Ces dépressions ont été observées autant sur des pistes construites sur des tills (dépôts glaciaires consistants d’argile, de sable, de gravier et de blocs rocheux) que sur des sols fins d'origine fluviale ou marine. L'aménagement des fossés au pied des talus de remblais et l'enneigement rapide de ces dépressions, sous l'action des vents et des opérations de déneigement des pistes, ont contribué à perturber le régime thermique du pergélisol à ces endroits et à accélérer son dégel. On observe donc, localement, des accumulations d'eau importantes dans les dépressions des fossés de drainage causées par la fonte de la glace du pergélisol. La stagnation d'eau dans ces dépressions constitue un apport additionnel de chaleur qui accélère le dégel du pergélisol et accentue les pentes des remblais, entraînant par la suite des instabilités de surface (Grondin et al., 2005).

De plus, la dégradation du pergélisol peut provoquer la libération dans l'atmosphère d'une grande quantité de carbone emprisonné dans les sols gelés (facteur pouvant engendrer un réchauffement additionnel du climat) (Nelson, 2003). Également, sa dégradation inclut des changements de drainage et de l'humidité des couches supérieures, modifiant les écosystèmes. Selon une étude au Tanana Flats, en Alaska, la dégradation du pergélisol mène à la modification radicale d'écosystèmes dont la mort répandue des forêts de bouleau et de leurs emplacements par des écosystèmes aquatiques herbacés (Jorgenson et al., 2001). La mortalité des forêts
cause la mortalité des insectes d’arbre, « c’est le plus grand épisode de mortalité des insectes d'arbre jamais enregistré en Amérique Nord », dit Glenn Juday, un professeur d'écologie forestière à l'Université de l’Alaska, pour Knight Ridder Newspapers (Borenstein, 2003). Les animaux sont forcés de quitter leur habitat naturel, lorsque leur source de nourriture y devient inexistant. Pour cette raison, la migration des microbiens, des insectes, des animaux sauvages et des populations marines (telles que le poisson anadrome, les fleurs de phytoplankton et les communautés benthiques), a déjà été observée (ACIA, 2005). Tout cela va avoir un grand impact sur le style de vie des habitants nordiques, en forçant même la mobilité des villages. Mais, est-ce que les autres parties du monde sont protégées? « Si vous voulez voir ce qui se produira dans le reste du monde d’ici 25 ans, vous n’avez qu’à regarder ce qui se produit dans l’Arctique présentement! » a indiqué Robert Corell (Corell, 2004), un scientifique du National Science Foundation qui a dirigé la recherche pour l’équipe d’évaluation des impacts du climat en arctique.

Il faut encore mentionner quelques autres conséquences au dégel du pergélisol. Lorsque ce dernier fond, la roche se désagrège et tombe. Un exemple extrême de ceci s’est produit pendant la vague de chaleur* européenne de 2003, lorsqu’un bloc énorme du Matterhorn s’est détaché soudainement, faisant chuter les alpinistes. Beaucoup de branches de l’industrie vont subir de tels dommages (industrie forestière, industrie oléifère, exploitation des mines, …). Les mines souterraines courent un grand risque de chute de roche et d’inondation, en raison de la réduction de la résistance du sol. Le thermokrast, une topographie irrégulière due au processus d’effondrement du sol provoqué par la fusion de la glace dans le sol dans un pergélisol instable au dégel, peut détruire les régions côtières et, comme déjà mentionné plus haut, endommager des routes, des bâtiments et des canalisations.

* une vague de chaleur est une période, très chaude, qui survient pendant plusieurs jours durant lesquels les températures ont une moyenne de plus de 38 °C.
Les coûts associés au thermokrast peuvent s’éléver à plusieurs milliards de dollars. En réponse à la hausse de température observée depuis le début des années 90 dans le Nord du Québec, qui a déjà engendré des répercussions importantes sur les infrastructures, beaucoup de techniques ont été développées pour assurer la stabilité des structures en cas de dégel de la terre en dessous de celles-ci. Mais, le manque d'information sur la nature et les caractéristiques du pergélisol entrave l’efficacité de la réaction.

Le pergélisol couvre le quart de la surface continentale de la terre (environ 23 millions kilomètres carré), soit presque 50% du territoire canadien et environ 20% de la surface québécoise (Figure I.2). Sa très grande superficie peut expliquer à elle seule l’importance d’étudier sa dynamique et d’accroître les activités de recherche dans ce domaine. Les figures (Figure I.2) montrent quatre différentes régions du pergélisol définies par Heiginbottom et al. (1993): le pergélisol continu, discontinu, sporadique et isolé. Dans la zone à pergélisol continu, le pergélisol est présent partout sous la surface du sol, à l'exception des grandes étendues d'eau. Dans la zone à pergélisol discontinu, le pergélisol est sous-jacent à 50-90% de la surface, et dans la zone à pergélisol sporadique, il est présent surtout sous les tourbières et est sous-jacent à 10-50% de la surface. Le pergélisol est également présent dans des régions isolées, où il apparaît en petites lentilles isolées dans la tourbe et est sous-jacent à moins de 10% de la surface.

Changements climatiques

Les projections des changements climatiques faites par les modèles de circulation générale (MCG) et les modèles régionaux du climat (MRC), pour les différents scénarios du SRES (Special Report on Emission Scenarios), prévoient une augmentation de la température de l’air moyenne annuelle d’environ 1°C à 6°C au niveau mondial. Ce réchauffement serait beaucoup plus important et intense dans la région nordique, et plus fort en hiver qu’en été (ex. Plummer et al., 2005; ACIA,
2005). Par exemple, les projections suggèrent une augmentation de la température de l'air en hiver de 3°C à plus de 7°C et de plus petits changements (de 1°C à 4°C) dans la température de l'air d'été, au nord du Canada (Plummer et al., 2005). La répartition spatiale, l'épaisseur et la température du pergélisol étant étroitement dépendantes de la température de l’air, ce réchauffement prévu va avoir de grands impacts sur celles-ci. Les études précédentes (Anisimov et Nelson, 1997; Stendel et Christensen, 2002; Sazonova et Romanovsky, 2004) prévoient un déplacement du pergélisol vers le nord et une augmentation de l’épaisseur de la couche active de plus de 50%. Mais, des projets de recherche supplémentaires sont nécessaires, particulièrement sur la projection des changements climatiques afin de se préparer humainement, environnementalement et économiquement à faire face à ces changements, et de proposer des scénarios d'adaptation pour les cas problématiques.

Mise au point d’un modèle et objectifs de travail

l'équation de conductivité de la chaleur. Dans cette étude, on a utilisé le modèle de conductivité de la chaleur de Goodrich, surnommé TONE (Goodrich, 1976). Nous avons choisi d’utiliser ce modèle parce qu’il est simple, qu’on a démontré qu’il donne de très bons résultats et que plusieurs nouveaux modèles ont été basés sur lui, et qu’il continue d’être encore beaucoup employé aujourd’hui. Ce modèle a été conçu pour répondre à une vaste gamme de problèmes thermiques du sol donc, il nous permet de bien déterminer les influences des changements environnementaux sur le pergélisol. Une description plus détaillée est donnée dans le chapitre suivant.

Dans le cadre de ce mémoire, nous étudierons les changements du régime thermique du sol pergélisolé induits par les changements climatiques dans la région nord-est du Canada. Le terme "régime thermique de la terre" est, dans le cas présent, associé à un nombre de variables telles que la température annuelle moyenne du sol, les températures extrêmes du sol, les séries chronologiques des températures aux différentes profondeurs, la profondeur d'une couche active aussi bien que la profondeur et l'intervalle de la pénétration saisonnière de certaines isothermes, etc. Dans la Figure I.3, on peut visualiser quelques-uns des termes qui vont être utilisés. Par exemple, on peut voir que le terme du plafond du pergélisol se rapporte à la zone entre le pergélisol et le mollisol (la couche active).

Le modèle de sol utilisé a été forcé par plusieurs variables météorologiques et géophysiques telles que la température de l’air, l’épaisseur de neige, les propriétés thermiques du sol, … La température de l’air en surface et l’épaisseur de neige sont tirées d’archives de simulations du Modèle Régional Canadien du Climat, MRCC, version 3.6.3. (Caya et Laprise, 1999 ; Laprise et al., 2003). Les changements du régime thermique du sol sont simulés pour la période entre 1961 et 1990, pour le climat actuel, et de 2041 à 2070, pour le climat futur, correspondant au scénario IS92a du SRES (Special Report on Emission Scenarios). À notre connaissance, c'est la première simulation des changements du régime thermique du sol avec un modèle
de sol, en utilisant les données d’entrée d’un modèle régional du climat. L’étude présentée dans ce mémoire est effectuée sur le nord-est du Canada, à la résolution horizontale de 45 km, et couvre un domaine de 4995×2610 km². Le domaine contient chacune des quatre différentes régions du pergélisol (Figure I.2) : le pergélisol continu, discontinu, sporadique et isolé (Heiginbottom et al., 1993).

Le présent mémoire est divisé en trois chapitres. Le premier chapitre décrit, en détail, le modèle de sol utilisé, tandis que le chapitre II présente sa validation. Le but des deux premiers chapitres est de comprendre les possibilités du modèle et de voir les influences des différentes variables (i.e. la couverture de neige, le flux géothermique, la conductivité thermique, …) sur les résultats. Par la suite, nous présenterons les résultats obtenus par simulation des changements du régime thermique du sol induits par les changements climatiques (chapitre III). Entre autres, on verra les variations de la profondeur de la couche active et de la distribution du pergélisol, aussi bien que l’évaluation des températures du sol. Certains des résultats sont comparés avec les observations et ont obtenu une très bonne concordance. Ce chapitre est présenté sous la forme d’un article en anglais.
Figure I.1. Dommages enregistrés à l’Alaska (premières deux photos) et au Territoire du Yukon (dernière photo) produit par la fonte du pergélisol.
Figure I.2. La distribution du pergélisol mondialement, au Canada et au Québec, respectivement.
Figure I.3 Les termes utilisés pour décrire le sol pergélisolé (Allard et al., 1989)
1. DESCRIPTION DU MODÈLE « TONE »

Cette section présente une description détaillée du modèle de sol utilisé dans cette étude. Le modèle TONE est un modèle unidimensionnel conçu pour l’étude du régime thermique du sol. Il a été développé par Laurel E. Goodrich au cours de l’année 1976 et est encore utilisé de nos jours, dans sa version intégrale. Le modèle est basé sur la méthode d’éléments finis et il simule les températures du sol en résolvant l’équation de conductivité de la chaleur. Il inclut l’effet thermique de la couverture de neige, mais il n’inclut ni le transport d’eau capillaire ni les écoulements convectifs dans la terre. Un modèle de neige qui décrit la densification d’une couverture saisonnière de neige est incorporé dans le modèle (Goodrich, 1976). Le changement de phase d’eau dans le sol est aussi traité. Le modèle a été conçu pour répondre à une vaste gamme de problèmes thermiques du sol et plusieurs études ont montré qu’il donne de très bons résultats (Goodrich, 1982; Oelke et Zhang, 2004).

Ce modèle est fondé sur l’équation de la conductivité de la chaleur (nous reviendrons plus loin sur la contribution de la chaleur latente associée aux changements de phase de l’eau):

\[
\frac{\partial}{\partial t}(\rho c T) = \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right)
\]

(1.1)

où t : temps

\(\rho c \) : capacité volumétrique de chaleur (\(\rho \) : densité, c : capacité de chaleur par unité de masse)

T : température

z : profondeur
k : conductivité thermique

La discrétisation numérique de cette équation selon la méthode de Crank-Nicholson généralisée prend la forme suivante :

\[
\frac{(\rho \Delta z) + (\rho \Delta z)}{2} \left(\frac{T_{i+1}^m - T_i^m}{\Delta t} \right) = \frac{1}{2} \left(\frac{k}{\Delta z} \right) \left(\frac{T_{i+1}^{m+1} - T_i^{m+1} + T_i^m - T_{i-1}^m}{\Delta z} \right)
\]

L'indice \(i \) indique le nœud d'une couche à la verticale, l'indice \(m \) montre le temps, \(\Delta t \) est le pas de temps et \(\Delta z \) est la profondeur d'une certaine couche. Dans le modèle TONE, il y a la possibilité d’utiliser d’autres schémas plutôt que celui de Crank-Nicholson, mais il est préférable d’utiliser ce dernier en raison de ses bonnes propriétés (ex. sa stabilité est absolue).

Par commodité, on pose

\[
\frac{(\rho \Delta z) + (\rho \Delta z)}{2} = RC_i \quad \text{et} \quad \frac{k}{\Delta z} = CN_i
\]

d'où nous membre à l’équation suivante :

\[
RC \left(T_{i+1}^{m+1} - T_i^m \right) = CN \left(T_{i+1}^{m+1} - T_i^{m+1} + T_i^m - T_{i-1}^m \right) - CN_{i-1} \left(T_{i+1}^{m+1} - T_i^{m+1} + T_i^m - T_{i-1}^m \right)
\]

ou, dans la forme plus simplifiée :

\[
-A_i T_{i-1}^{m+1} + B_i T_i^{m+1} - C_i T_{i+1}^{m+1} = RHS_i
\]

où l’on a
\[A_i = CN_{i-1} \]
\[B_i = RC_i + CN_{i-1} + CN_i \]
\[C_i = CN_i \]
\[RHS_i = CN_{i-1}T_{i-1}^m + (RC_i - CN_i - CN_{i-1})T_i^m + CN_iT_{i+1}^m \]

L’équation de conductivité de la chaleur sous la forme 1.4 est solutionnée dans un programme informatique. Elle représente un système d’équations linéaires et elle a été résolue, dans le modèle, par la méthode bien connue d’élimination gaussienne pour la matrice tridiagonale.

L’équation de conductivité de la chaleur contient deux dérivées spatiales et une dérivée temporelle, donc sa solution exige deux conditions aux frontières et une condition initiale. Pour les conditions aux frontières, on peut utiliser le flux de chaleur ou la température, tandis que pour la condition initiale, il faut spécifier un profil vertical de température du sol.

Dans le modèle, on peut fixer le nombre de couches désirées, en respectant le critère du nombre de Fourier qui donne la relation entre le maillage, le pas du temps et la diffusivité thermique (équation 1.5). Généralement, une valeur de 0.25 pour le nombre de Fourier minimal (\(\varepsilon_{\text{min}}\)) est suffisamment grande pour assurer une résolution acceptable pour le problème étudié (Goddrich, 1976) :

\[
\frac{\rho C(\Delta z)^2}{k\Delta t} > \varepsilon_{\text{min}}
\]

(1.5)

Les propriétés thermiques telles que la capacité calorifique, la conductivité thermique, la densité du sol et le contenu en eau du sol sont considérées constantes dans chaque couche et dans chaque intervalle de temps. Dans le modèle, des valeurs distinctes pour les propriétés thermiques pour le sol gelé et le sol dégelé sont considérées.
La capacité calorifique tient compte du changement de phase de manière implicite. Autrement dit, autour de 0°C, la capacité calorifique est une fonction de la chaleur latente de la congélation (équation 1.6). Pendant le changement de phase, la température de fusion (T_f) est fixée à 0°C (Goodrich, 1976) :

\[c_{cf} = \begin{cases}
 c_f, & \text{pour } T > T_f \\
 c_f + L_v W / \Delta T, & \text{pour } T_f - \Delta T < T < T_f \\
 c_f, & \text{pour } T < T_f - \Delta T
\end{cases} \tag{1.6} \]

où \(c_{cf} \): la capacité de chaleur effective

\(c_f, c_T \): la capacité calorifique de gel/dégel

\(L_v \): chaleur latente de fusion

\(W \): contenu en eau du sol

\(T_f \): température de congélation

\(\Delta T \): petit intervalle de la température sur lequel le changement de phase est complet.

Finalement, comme valeurs en entrée du modèle, on peut introduire les données de la neige (la profondeur et la densité de neige). La couverture de neige peut se composer d’une seule couche ou de séries de couches dont la densité et l’épaisseur changent avec le temps, en accord avec les changements d’épaisseur de neige et du nombre total de couches. Le modèle contient une sous-routine qui tient compte de la densification d’une couverture de neige, mais dans le cadre de ce mémoire, pour la densité de neige, nous avons utilisé la valeur constante de 250 kg/m³. La valeur de capacité thermale de la neige est prise comme étant 2093,0 Jkg⁻¹°C⁻¹ et la conductivité de la neige (k_n) est calculée à partir de l’équation de Devaux :

\[k_n = 2.9 \cdot 10^2 + 2.9 \rho_n^2 \tag{1.7} \]
où \(\rho_n \) est la densité de neige.

Les séries de résultats contiennent les températures maximales, minimales et moyennes annuelles, en plus de la somme annuelle des degrés-jours de gel et dégel (i.e. l’indice de dégel et l’indice de gel). Ces paramètres, donnés pour l’air aussi bien que pour tous les points nodaux du profil du sol, sont présentés pour chacune des années de calcul. Puis, le flux de chaleur à un ou des niveaux précis, la position d’un ou plusieurs isothermes et les caractéristiques de la couverture de neige sont calculés dans le modèle. Finalement, le modèle calcule l’évolution temporelle de la température du sol pour chaque nœud de la grille, à chaque pas de temps.
2. VALIDATION DU MODÈLE

Le présent chapitre traite de la validation du modèle de sol utilisé afin de justifier son utilisation et de bien évaluer sa capacité à simuler le régime thermique du sol. Premièrement, nous validerons le modèle en comparant la solution numérique avec une solution analytique, pour un cas simple. Dans la deuxième partie, avant de présenter les résultats, nous effectuerons quelques tests de sensibilité afin d’évaluer l’influence des forçages des paramètres météorologiques et géophysiques sur la température du sol.

2.1. Comparaison entre les solutions analytique et numérique

2.1.1. Solution analytique

L’équation de conduction de la chaleur unidimensionnelle :

\[
\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial z^2}, \quad \alpha = \frac{k}{\rho c}
\]

(2.1)

où \(\alpha \) est la diffusivité thermique, est une équation différentielle partielle qui contient deux dérivées spatiales et une dérivée temporelle. Donc, pour résoudre cette équation, on a besoin de deux conditions aux frontières et une condition initiale. On a choisi une variation périodique de la température avec période \(w_0 \) à la frontière.
supérieure, une température de 0°C à la frontière inférieure et une température initiale
uniforme à la verticale, c-à-d :

\[
T(0,t) = T_0 \sin \omega_0 t \\
T(\infty, t) = 0\degree C, \ t > 0 \\
T(z,0) = T_0
\]

Comme les conditions aux limites ne sont pas homogènes, l’équation 2.1 sera
résolue en termes de variables complexes. Donc, en introduisant la fonction complexe
\(\tilde{T}(z,t) \) :

\[
\frac{\partial \tilde{T}}{\partial t} = \alpha \frac{\partial^2 \tilde{T}}{\partial z^2}
\]

les conditions aux frontières seront:

\[
\tilde{T}(0,t) = T_0 e^{i\omega_0 t} \\
\tilde{T}(\infty, t) = 0\degree C
\]

où \(T_0 \) est la température initiale. Évidemment, \(T(z,t) = \text{Im}(\tilde{T}) \) où \(\text{Im} \) signifie la
partie imaginaire de la fonction \(\tilde{T} \).

Au début, il faut trouver une solution particulière. Néanmoins, la fonction
\(\tilde{T}(z,t) \) peut être définie comme suit :

\[
\tilde{T}(z,t) = e^{i\tilde{\theta}(z,t)}
\]

où \(\tilde{\theta}(z,t) \) est une fonction auxiliaire, aussi complexe. En substituant l’équation
2.5 dans l’équation 2.3, on obtient :

\[
\frac{\partial \tilde{\theta}}{\partial t} = \alpha \left[i \left(\frac{\partial \tilde{\theta}}{\partial z} \right)^2 + \left(\frac{\partial^2 \tilde{\theta}}{\partial z^2} \right) \right]
\]

\[
(2.6)
\]
C’est une équation non linéaire et nous allons supposer la solution particulière sous la forme linéaire :

\[\tilde{\theta}(z, t) = a_1 z + a_2 t + a_3 \]

(2.7)

où \(a_1, a_2, \) et \(a_3 \) sont les constantes complexes. À partir de 2.6 et 2.7, on obtient \(a_2 = i\alpha a_1^2 \) et la température devient :

\[\tilde{T}(z, t) = Ae^{i(a_1 z + a_2^2 t + a_3)} \]

(2.8)

Si nous comparons la dernière équation avec l’équation 2.4, nous voyons que

\[A = T_0 \ et \ \omega_0 = i\alpha a_1^2 \]

(2.9)

Puisque \(a_1 \) est un nombre complexe, ceci implique :

\[a_1 = x + iy \Rightarrow a_1^2 = x^2 - y^2 + 2ixy = -i\frac{\omega_0}{\alpha} \]

(2.10)

Chaque nombre complexe a deux racines. On obtient une des racines quand on prend :

\[x^2 - y^2 = 0 \Rightarrow x = \pm y \Rightarrow 2xy = \pm 2x^2 = \frac{\omega_0}{\alpha} \Rightarrow x = \sqrt{\frac{\omega_0}{2\alpha}} \]

\[\Rightarrow a_{1/1} = \sqrt{\frac{\omega_0}{2\alpha}} - i\sqrt{\frac{\omega_0}{2\alpha}} \]

La deuxième racine est symétrique sur (0,0), donc, \(a_{1/2} = -\sqrt{\frac{\omega_0}{2\alpha}} + i\sqrt{\frac{\omega_0}{2\alpha}} \).

Lorsque \(a_{1/1} \) ne satisfait pas la condition à la frontière inférieure, ceci implique :
\[a_i = a_{i/2} = -\frac{\omega_0}{2\alpha} + i\frac{\omega_0}{2\alpha} \] (2.11)

Puisque \[a_i^2 = -i\frac{\omega_0}{\alpha} \], l’ensemble des équations 2.8, 2.9 et 2.11 forme une solution particulière de l’équation 2.3 :

\[\tilde{T}(z,t) = T_0 e^{-z\frac{\omega_0}{2\alpha}} e^{-\left(\omega_0 z - t\frac{\omega_0}{\sqrt{2}\alpha}\right)} \] (2.12)

Retournant maintenant à la fonction réelle, \(T(z,t) = \text{Im}(\tilde{T}) \), on obtient une des solutions de l’équation de conductivité de la chaleur (l’équation 2.1) :

\[T(z,t) = T_0 e^{-z\frac{\omega_0}{2\alpha}} \sin\left(\omega_0 t - z\frac{\omega_0}{\sqrt{2}\alpha}\right) \] (2.13)

Cette équation, appliquée aux problèmes de variations sinusoïdales des températures de l’air, nous dit que la température du sol varie entre \(-T_0\) et \(T_0\) à la surface et tend vers 0°C lorsque la profondeur \(z\) tend vers l’infini. Donc, l’amplitude de la perturbation de température diminue avec la profondeur. De plus, le deuxième facteur (\(\sin()\)) montre qu’il existe un décalage de l’onde pendant le temps, à toute profondeur \(z\).

2.1.2. Solution analytique vs numérique

Afin de comparer la solution analytique avec la solution numérique, nous avons choisi de faire une simulation simple, en enlevant la neige et les effets de la chaleur latente. Puis, nous avons supposé la capacité calorifique \(k\), la conductivité
thermique (c) et la densité du sol (ρ) constantes partout et à tous les pas de temps. Les valeurs utilisées pour ces constantes sont les suivantes :

\[
\begin{align*}
 k &= 2.21 \frac{W}{m^2} \\
 c &= 836.85 \frac{J}{kg°C} \\
 \rho &= 1500 \frac{kg}{m^3}
\end{align*}
\]

La température initiale est prise comme une valeur constante de 15°C partout dans le sol. Pour la condition à la frontière supérieure, nous avons utilisé la température sinusoïdale sur une période d’un an avec l’amplitude de 15°C, et pour la condition à la frontière inférieure, la température constante de 0°C, i.e. :

\[
\begin{align*}
 T(z,0) &= T_0 = 15°C \\
 T(0,t) &= T_0 \sin \omega_0 t, \quad \omega_0 = \frac{2\pi}{365 \text{ jours}} \\
 T(\infty,t) &= 0°C, \quad t > 0
\end{align*}
\]

Dans le cadre de ce test, le pas de temps a été d’un jour et la profondeur du sol de 45 mètres. La profondeur totale de 45 m a été divisée en 90 couches avec une épaisseur de 0.1 m pour les 50 premières couches (i.e. jusqu’aux premiers 5 mètres) et de 1m pour les 40 dernières couches (i.e. les couches entre 5 et 45 m). Chacune de ces couches a les mêmes propriétés de sol, tel que défini dans l’équation 2.14.

Pour ce simple cas, nous avons obtenu une très bonne concordance entre les solutions analytique et numérique (Figure 2.1 et Figure 2.2). Dans la figure 2.1, on a montré les solutions pour la température du dernier jour de l’an, quand l'état d'équilibre est atteint (i.e. dans 34 années). Le modèle a été exécuté jusqu'à ce que le profil de température ait une différence entre les cycles annuels de moins de 0.001°C.
La figure 2.2 présente, en bleu, les températures du sol obtenues analytiquement pour chaque jour, au cours de toute l’année et, en rouge, les températures maximales et minimales annuelles simulées par le modèle. Cette présentation de l’écart annuel des températures du sol qui est indiqué par la température du sol la plus chaude et la température la plus froide en profondeur fixée se nomme « enveloppe » et c’est souvent une bonne façon de présenter le profil de température du sol. La très bonne concordance obtenue dans les deux figures entre les valeurs calculées analytiquement et par le modèle nous assure de bonnes simulations du modèle TONE.

2.2. Sensibilité à la neige et aux conditions du pergélisol

Pour l’étude du régime thermique dans la région nordique, il est très important de bien examiner la sensibilité du modèle aux différentes conditions de neige et aux conditions de basses températures. Pour répondre à ces objectifs, nous avons réalisé les simulations en utilisant des variables météorologiques modifiées. Pour l’épaisseur de neige, nous avons fait trois simulations avec l’épaisseur de neige augmentée et réduite de 50% et sans la neige. Pour la température de l’air, nous avons utilisé les températures relativement élevées et les températures diminuées d’environ 10°C, afin de simuler les conditions du pergélisol. Afin de vérifier quelques-uns de nos résultats, nous nous sommes efforcés d’utiliser les mêmes paramètres d’entrée que ceux utilisés dans l’article de Goodrich (1982).

Pour toutes les expériences de cette section, la condition à la frontière supérieure est la température de l’air de forme sinusoïdale et de période d’un an. Le flux géométrique à la frontière inférieure de 15 m a été considéré constant avec une valeur de 0.063 W/m² et dirigé vers le bas. Ce flux engendre le gradient thermique le long du profil qui est en concordance avec celui observé. Ensuite, on suppose un sol
homogène (à grains fins) avec la profondeur de 15 m. Les propriétés du sol sont constantes dans le temps et elles sont données au tableau 2.1. k_F et k_T représentent les conductivités thermiques du sol gelé et dégelé respectivement, lorsque toutes autres variables ont déclarées auparavant. Pour chaque simulation, on a utilisé le même critère de convergence où l’état d’équilibre est atteint quand le profil de température a une différence entre les cycles annuels de moins de 0.001°C.

<table>
<thead>
<tr>
<th>k_F (W/mK)</th>
<th>C_F (MJ/m3K)</th>
<th>k_T (W/mK)</th>
<th>C_T (MJ/m3K)</th>
<th>ρ (t/m3)</th>
<th>W (%)</th>
<th>C_{ef} (vers 0°C) (MJ/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.21</td>
<td>1.92</td>
<td>1.13</td>
<td>2.87</td>
<td>1.3</td>
<td>35</td>
<td>900</td>
</tr>
</tbody>
</table>

Tableaux 2.1 Propriétés du matériel supposées dans la simulation du modèle.

Au début, on a testé la capacité du modèle à simuler les différences de températures du sol, lorsqu’il y a de la neige et lorsque la neige est absente. La condition à la frontière supérieure est une température sinusoïdale qui varie entre -10°C et 20°C (Figure 2.3a). Pour la simulation sans neige, avec une température initiale du sol de 2°C partout, l’état d’équilibre est atteint en 22 ans. Les résultats obtenus sont montrés à la figure 2.4, sous une forme d’enveloppe (i.e. on a montré les profils de la température du sol maximale, moyenne et minimale annuelle). Sans neige, la température du sol varie entre -10° et 20°C à la surface, puis la différence saisonnière de température du sol diminue avec la profondeur, atteignant «la profondeur d’amplitude zéro» (i.e. le point à partir duquel le changement discernable est inférieur à 0.1°C) à une profondeur d’environ 8m. La température du sol à 15 m est de 3.0°C. Pour le cas avec la neige, la densité de la neige a une valeur constante.
de 250 kg/m³ et son épaisseur varie durant les 95 premiers jours et les 65 derniers jours de l’année (Figure 2.3b). En ajoutant la couverture de neige qui s’avère un très bon isolant, puisque sa capacité thermique est grande, nous obtenons une grande augmentation des températures à toutes les profondeurs (Figure 2.4). La différence obtenue pour la température du sol moyenne annuelle est de 2.1°C à la surface et de 4.4°C à la profondeur de 15 m. De plus, la couverture de neige réduit l'amplitude des variations annuelles de températures de surface. Donc, le modèle a été capable de bien simuler une importante propriété de la neige, son pouvoir d’isolation thermique.

Il est aussi nécessaire que le modèle simule de façon adéquate l’influence de l’épaisseur de neige, car une mauvaise estimation de la période de gel pourrait mener à une surestimation ou à une sous-estimation de la température du sol. Pour cette raison, nous avons fait une simulation supplémentaire en conservant toutes les données d’entrée précédentes, nonobstant la couverture de neige que nous avons diminué de moitié partout (Figure 2.5). Un des résultats est montré à la Figure 2.6. Pour une meilleure comparaison, on a gardé l’enveloppe obtenue à partir de la simulation sans neige. Les différences entre les simulations se situent au niveau des valeurs de température atteintes. Des conditions de neige abondante génèrent des températures plus élevées alors que les conditions sans neige génèrent des températures plus basses. Les différences de températures entre les deux simulations avec neige sont plus petites que les différences entre la simulation avec neige (n’importe laquelle des deux) et sans neige. La température moyenne annuelle du sol lorsque l’épaisseur de neige a été réduite de 50% est presque partout 0.5°C plus petite en comparaison avec les températures pour le cas avec l’épaisseur de neige maximale de 0.5 m. De façon générale, on peut dire que l’épaisseur de neige modifie réellement la structure du profil thermique du sol.

Maintenant, nous regardons ce qui se passe quand nous diminuons la température de l’air en faisant varier la température entre -30°C et 10°C (Figure
2.7a). C’est la condition où le pergélisol est présent. Afin de produire un cas plus réaliste, nous avons augmenté la durée de la couverture de neige (Figure 2.7b). Les autres paramètres sont les mêmes que ceux utilisés précédemment. Avec l’augmentation de la température de l’air, la température du sol augmente systématiquement et maintenant, on voit clairement la zone de la couche active (où la température maximale annuelle est supérieure à 0°C) et la zone du pergélisol en dessous. La profondeur d’amplitude zéro se trouve ici à 13 m plus profonde qu’avant à cause de la plus grande amplitude de la température de l’air prescrite dans le modèle.

Tous les résultats présentés dans cette section sont similaires avec les résultats obtenus par Goodrich dans son article (Goodrich, 1982).

2.3. Sensibilité au type de sol

Le but de cette section est de déterminer l’influence des différents types de sol sur le régime thermique du sol. Le premier test considère les différences de températures du sol causées par différentes propriétés du sol, ce dernier étant constitué d’argile ou de sable. Par la suite, nous nous concentrerons sur l’influence de la conductivité thermique.

Au début, on a simulé les températures du sol en gardant toutes les données d’entrée identiques et variant seulement les propriétés du sol. On a prescrit la température de l’air qui varie sinusoidalement entre -30°C et 10°C. La neige n’a pas été incluse dans ces simulations afin de ne pas mélanger son influence sur le régime thermique du sol avec les autres influences. Le sol composé de sable et celui composé d’argile ont été considérés séparément. Les valeurs des propriétés du sol pour ces
deux types de sol sont tirées de Jumikis (1977) et elles sont données au tableau 2.2. On peut également voir ici que dans la plupart des conditions de terrain, un sol gelé est plus conducteur que le même sol non gelé (i.e. $k_F > k_T$). Cette condition est causée par le fait que la conductivité thermique de la glace est environ quatre fois supérieure à celle de l’eau.

<table>
<thead>
<tr>
<th>Matériel</th>
<th>k_F (W/m\cdotK)</th>
<th>C_F (MJ/m3K)</th>
<th>k_T (W/m\cdotK)</th>
<th>C_T (MJ/m3K)</th>
<th>ρ (t/m3)</th>
<th>W (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>argile</td>
<td>2.21</td>
<td>1.92</td>
<td>1.13</td>
<td>2.87</td>
<td>1.30</td>
<td>35</td>
</tr>
<tr>
<td>sable</td>
<td>3.01</td>
<td>1.86</td>
<td>2.19</td>
<td>2.40</td>
<td>1.75</td>
<td>15</td>
</tr>
</tbody>
</table>

Tableaux 2.2 Propriétés de l’argile et du sable considérées dans la simulation du modèle.

La figure 2.9 illustre la température maximale, moyenne et minimale pour le sol avec le sable (les ligne tiretées) aussi bien que pour le sol avec l’argile (les lignes pleines). Bien que les propriétés thermiques varient selon le type de sol, la diffusivité thermique, qui présente la relation entre eux (voir l’équation 2.1), ne varie pas beaucoup. Ceci va impliquer des différences de températures du sol relativement petites, moins de 1°C partout (Figure 2.9). Cependant, l’augmentation légère de la diffusivité thermique pour le cas avec le sable, particulièrement pour les températures inférieures de 0°C, va résulter en une faible augmentation de la température du sol.

En suivant le même but, qui est de bien comprendre l’influence des propriétés thermiques du sol sur le régime thermique du sol, il est intéressant de voir comment la conductivité influe à elle seule sur la température du sol. La conductivité thermique représente la capacité du sol à transmettre la chaleur. Plus précisément, elle
représente la vitesse de propagation de la chaleur dans des conditions bien définies, à travers une surface unitaire, par unité de variation de température dans une direction perpendiculaire à la surface. Son influence sur le régime thermique du sol sera déterminée en utilisant les mêmes conditions aux frontières et les conditions initiales qu’auparavant (i.e. température de l’air varie entre –30°C et 10°C et la neige n’est pas présente). Dans cette expérience, on a supposé que le sol est homogène, constitué de sable avec la capacité calorifique égale à une constante de 1.86 MJm⁻³K⁻¹ (à n’importe quelle température, i.e. C_f=C_T), la densité du sol est de 1.75 t/m³ et son contenu d’eau est de 15%. Les changements de phases ne sont pas considérés. On a réalisé trois expériences avec des conductivités de 0.30, 3.01 et 30.01 Wm⁻¹K⁻¹. Les résultats sont montrés à la figure 2.10.

On voit à la figure 2.10a que l’atténuation de l’amplitude des oscillations de la température avec la profondeur diminue avec une augmentation de la conductivité k. Ce résultat est en concordance avec la théorie, car si on regarde la solution analytique de l’équation de la conductivité de la chaleur:

\[
T(z, t) = T_0 e^{-z \sqrt{\frac{\omega_0 \rho C}{2k}}} \sin \left(\omega_0 t - z \sqrt{\frac{\omega_0 \rho C}{2k}} \right)
\]

(2.13)
on on peut facilement voir que lorsque la conductivité k est plus grande, l’atténuation de l’amplitude de l’oscillation de la température est plus faible. Une autre conclusion faite à partir de la figure 2.10b est la suivante : plus la conductivité est grande, plus le gradient vertical de la température moyenne est petit. Nous pouvons mieux voir ceci à la figure 2.10b, où nous avons isolé seulement les courbes des températures moyennes. Néanmoins, retournons sur l’équation de conduction de la chaleur unidimensionnelle:

\[
\rho c \frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right)
\]
À la fin de notre simulation, l’état d’équilibre est atteint, c’est-à-dire que la variation temporelle de la moyenne annuelle de la température tend vers zéro. Ceci implique que la multiplication entre la conductivité et le gradient de la température est constante selon la profondeur et est exactement égale au flux à la limite inférieure (F_{bottom}), i.e. :

$$\lim_{t \to \infty} \frac{\partial T}{\partial t} = 0 \Rightarrow k \frac{\partial T}{\partial z} = \text{const} = F_{\text{bottom}}$$ (2.16)

Nos résultats confirment l’hypothèse qu’en multipliant le gradient vertical de la température moyenne annuelle avec la valeur de la conductivité, nous obtenons la valeur du flux géothermique à la base, qui est dans cette simulation égal à 0.063 W/m2 (Figure 2.10 b). Donc, encore une fois, on a remarqué une bonne simulation du modèle.

2.4. Sensibilité aux conditions à la frontière inférieure

Finalement, nous réaliserez quelques expériences afin de tester la sensibilité du modèle aux conditions à la frontière inférieure. La condition à la frontière inférieure a été jusqu’à maintenant donnée à une profondeur de 15 m et est définie par le flux géothermique de 0.063 W/m2, dirigé vers le bas. Malgré cela, un flux géothermique plus réaliste à la frontière inférieure devrait être dirigé vers le haut (i.e. avoir une valeur négative selon notre notation). Afin de regarder quelles conséquences ceci entraîne dans nos résultats, nous avons fait tourner le modèle pour les différentes valeurs du flux, en gardant constantes les autres données d’entrée. Donc, en utilisant les valeurs de flux de 0.063 W/m2, 0.000 W/m2 et –0.063 W/m2, respectivement, l’influence du signe du flux aux températures du sol est montrée à la
figure 2.11. Des différences faibles sont observées. En changeant le signe du flux, nous n’avons obtenu que de faibles changements des températures du sol aux couches inférieures, pas plus de 0.4°C. Les températures du sol aux couches supérieures restent presque identiques, malgré le fait que notre frontière inférieure ne soit pas très profonde (i.e. elle est éloignée de seulement 15m de la surface). Ces expériences prouvent que le flux géothermique, prescrit à la profondeur de 15 m, a une très petite influence sur les températures du sol et donc, en général, le régime thermique du sol est généralisé par les conditions à la limite supérieure. Judge et Beck (1973) ont estimé que, pour le nord canadien, le flux d’énergie provenant du soleil est 6000 fois plus important pour les températures du sol comparativement à celui provenant de l’intérieur de la terre.
Figure 2.1. Comparaison entre les solutions analytique et numérique d’un profil de température du sol à un temps spécifique au moment où la perturbation de la température à la surface passe par zéro.

Figure 2.2. Comparaison entre les solutions analytique et numérique des températures du sol pendant un an.
Figure 2.3 a) Température de l’air à la surface et b) épaisseur de neige.

Figure 2.4 Enveloppes pour la simulation sans neige (les lignes pleines) et avec la couverture de neige (les lignes tiretées). Les températures minimales pour un cycle annuel sont montrées en bleu, les températures maximales en rouge et les températures moyennes en noire.
Figure 2.5 a) Température de l’air à la surface et b) épaisseur de neige; la couverture de neige présentée avec les lignes pleines est deux fois plus petite que la couverture présentée avec les lignes tiretées.

Figure 2.6 Enveloppes pour la simulation sans neige (les lignes pleines), avec la couverture de neige jusqu’à 0.25m (les lignes pointées) et avec la couverture de neige jusqu’à 0.5m (les lignes tiretées). Les températures minimales pour un cycle annuel sont montrées en bleu, les températures maximales en rouge et les températures moyennes en noire.
Figure 2.7 a) Température de l’air à la surface et b) épaisseur de neige.

Figure 2.8 Enveloppes pour la simulation avec le pergélisol. La ligne noire pleine sépare la zone de pergélisol et la zone de la couche active.
Figure 2.9 Enveloppes pour la simulation avec le sable (les lignes pleines) et avec l’argile (les lignes tiretées); la neige est présente.
Figure 2.10 a) Enveloppes pour la simulation avec des conductivités de 0,30W/mK (les lignes bleues), de 3,01W/mK (les lignes cyans), et de 30,01W/MK (les lignes rouges); b) Température moyenne annuelle du sol pour les différentes conductivités.
Figure 2.11 Enveloppes pour la simulation avec les flux à la frontière inférieure de 0,063 W/m2 (les lignes pleines), de 0,000 W/m2 (les lignes tiretées), et de -0,063 W/m2 (les lignes avec les triangles).
3. IMPACT DES CHANGEMENTS CLIMATIQUES SUR LE RÉGIME THERMIQUE DU SOL

Le présent chapitre montre les résultats obtenus de l’étude du changement climatique du régime thermique du sol de la région du nord-est du Canada, en utilisant le modèle TONE. Il est présenté sous forme d’un article en anglais qui sera soumis sous peu : la section Référence se trouve à la fin, la Liste des figures et la Liste des tableaux au début de ce mémoire.
Modeled current and future soil thermal regime for North East Canada

Ivana Popadić, Laxmi Sushama and René Laprise
Department of Earth and Atmospheric Sciences
University of Quebec at Montreal

Corresponding Author address:
Ivana Popadic
Department of Earth and Atmospheric Sciences
University of Quebec at Montreal
Ouranos, 550 Sherbrooke West, 19th floor, West Tower
Montreal, Quebec H3A 1B9, Canada
Tel: (514) 282-6464 (x334)
Fax: (514) 282-7131
E-mail: popadic@sca.uqam.ca, sushama@sca.uqam.ca
Abstract

Deepening of the active layer (seasonally thawed surface layer of soil that lies above permafrost) was noted since the beginning of the Nineties in Northern Canada, and has already caused substantial socio-economic and eco-environmental consequences. There is a strong consensus among the projections of climate models used to study anticipated climate changes on the rise of the global average temperatures over the next century, with maximal changes being projected for high-latitude cold regions such as the permafrost regions. Given these projections, an evaluation of changes in the soil thermal regime becomes desirable for a number of reasons including assessments of possible ecosystem responses and impacts on infrastructures. Such an evaluation of changes in the soil thermal regime for North-Eastern Canada is presented in this paper using a one-dimensional heat conduction model. Projected changes are estimated as the difference between two simulations of the soil model corresponding to the current (1961–1990) and future IS92a SRES scenario climates (2041–2070). The surface air temperature and snow cover from time slices of transient climate simulations with the Canadian Regional Climate Model (CRCM) are used to drive the soil model. Results suggest significant warming trends in the annual mean, maximal and minimal near-surface soil temperatures, with the mean annual near-surface soil temperature increasing by 4°C for the continuous permafrost zone and by 2–3°C for the rest of the permafrost zones in North Eastern Canada. Results also suggest significant deepening of the active layer for the period 2041–70, with its thickness increasing by 40 to 80 percent for the continuous permafrost region.

Keywords: Soil thermal regime, active layer thickness, climate change, permafrost.
1. Introduction

Soil temperature is a valuable parameter for monitoring climate change as it integrates in time over long periods the interactions of several processes occurring at and above the ground surface, such as air temperature, precipitation, snowfall, seasonal snow cover, vegetation and surface micro-relief, as well as effects of soil type, soil moisture, and freezing and thawing processes (Oelke and Zhang, 2004). Recent observations of soil temperature profiles at northern high-latitudes all around the Earth indicate a deepening of the active layer (i.e., the seasonally thawed layer overlying permafrost). This increase in the active layer thickness (ALT) and associated permafrost degradation can have adverse effects on the socio-economic and eco-environmental systems. Climate-change projections by General Circulation Models (GCMs) and Regional Climate Models (RCMs) for mid-twenty-first century under various SRES (Special Report on Emission Scenarios) scenarios suggest an increase in winter surface air temperature by 2°C to more than 7°C in Canada, and smaller changes, by 1°C to more then 4°C, in the summer air temperature (e.g. Plummer et al., 2005; ACIA, 2005). These changes in surface air temperature will lead to changes in the soil thermal regime in permafrost regions.

Previous studies have investigated changes in permafrost using indices such as the surface frost index derived from climate model simulations archives. Anisimov and Nelson (1997) used such an index, applied to three transient simulations of general circulation models, to develop the first GCM-based climate-change assessment of permafrost dynamics over the Northern Hemisphere. Their results indicate that a large, nearly circumpolar zone of relict permafrost would develop by the 21st century. In a similar study, Stendel and Christensen (2002) calculated ALT using the modified Stephan’s equation with the climate-change projection experiment conducted with the coupled atmosphere-ocean general circulation model.
ECHAM4/OPY3. They show a 30–40% increase in the ALT for most of the permafrost area in the Northern Hemisphere by the end of the 21st century, with largest relative increases concentrated in the northernmost locations. That is to say that regions that currently have the shallowest active layer will experience the largest relative changes in a warmer world. It is worth mentioning that the above two studies had a spatial resolution of about 2.5°–5° of latitude/longitude.

The most viable approach to date has been the use of atmospheric model outputs in combination with an off-line soil model (e.g. Oelke and Zhang, 2004; Sazonova et al, 2004; Zhang et al., 2005). Oelke and Zhang (2004) applied a heat conduction model with phase change to the entire Arctic land drainage area for the period 1980–2001. Trend analysis revealed positive trends in soil temperature for all permafrost regions in response to positive trends in surface air temperature, with the strongest warming trend in the northernmost regions where is located the continuous permafrost. Sazonova et al. (2004) simulated the dynamics of the ALT and ground temperature along the East Siberian transect with a quasi-two-dimensional, quasi-transitional, spatially distributed, physically based analytical model, both retrospectively and prognostically, using climate forcing from six GCMs. Their results suggest increase in the ALT by 0.5–2m, with significant increases projected to occur in the southwestern part of the transect in areas with coarse-grained sediments, characterized by low water content and high thermal conductivity. Recently, Zhang et al. (2005) studied the 20th century variations in the ALT over the major drainage basins of the Eurasian Arctic using three methods (historical soil temperature measurements, annual thawing index based on surface air temperature data and a numerical model) and showed an upward trend in ALT.

Although the results of the above mentioned studies used a diversity of modeling approaches, there is a general consensus among the results that ALT are likely to increase by more than 50% in the northernmost permafrost locations
including much of Siberia, the Far East, the North slope of Alaska, and Northern Canada (ACIA, 2005). Most of the off-line soil model used for ALT and permafrost studies conducted so far used GCM outputs as input to the soil model.

In this paper, we study climate change induced shifts in the soil thermal regime over a domain covering North-Eastern Canada, using a 1-D heat conduction model (Goodrich, 1976) driven by the surface air temperature and snow cover from time slices of transient climate-change simulations with the Canadian Regional Climate Model (CRCM; Caya and Laprise, 1999; Laprise et al., 2003). To our knowledge, this is the first study to look at changes to the soil thermal regime with a soil model using a regional model’s data as inputs. Regional climate models offer higher spatial resolution than GCMs, allowing for greater topographic complexity and finer-scale atmospheric dynamics to be simulated and thereby representing a possibly more adequate tool for generating information for impact studies.

The paper is organized as follows: section 2 outlines the soil model description, data and methods used. Verification of the driving data and the simulated soil temperature profiles for the current climate are addressed in section 3. The effects of climate change on the soil thermal regime, particularly for permafrost zones, are presented in section 4. The paper ends with a summary of the results and conclusions in section 5.

2. Models, data and methods

2.1. Configuration of the soil model

The one-dimensional heat conduction model developed by Goodrich (1976) is used in this study. The model simulates soil temperature by solving the heat conduction equation with a finite element method subject to prescribed upper and lower boundary conditions. Non-linear material properties and solid-liquid phase
change are considered. The model includes the thermal effect of snow cover through the terms of thermic properties (see page 14, chapter 1), but it does not include capillary moisture transport nor convective flows in the ground. A snow model capable of describing densification of a seasonal snow cover is incorporated in the model (Goodrich, 1976). The fractional snow covered is not assumed. A detailed validation of the model is presented in Goodrich (1982), where it is shown that the model correctly simulates the influence of snow cover and the influence of soil type on the ground thermal regime. Several other previous studies used the same model (e.g. Oelke and Zhang, 2004; Zhang et al., 2005) and showed that the model succeeds in simulating active layer depth and soil temperatures when driven with suitable boundary conditions.

Simulations are performed on a 45 km × 45 km resolution grid with daily time step, over a domain covering North-East Canada (Fig. 1). The resolution of the domain was so chosen to match the resolution of the climate data used in this study, which is discussed in detail in the subsection to follow. The selected domain has regions of continuous, discontinuous, sporadic and isolated permafrost, following the permafrost classification of Heginbottom et al. (1993). It should be noted that the model is 1-D and there is no lateral transfer of heat among grid cells, which is fully justifiable at this resolution. The soil properties such as type of soil, depth to bedrock and other properties are specified using the land-surface datasets developed by Wilson and Henderson-Sellers (1985) and values of thermal conductivity and heat capacity are taken from Jumikis (1977). Daily surface air temperature is used as upper boundary condition while lower boundary condition (at 45 m) is defined as the constant geothermal flux. Calculations are performed for 85 soil layers; the layers in upper 10 m are 0.2 m thick, providing 50 calculation nodes, and the layers in the remaining 35 m have 1 m thickness.
2.2. Experiments and climate data

Three simulations are performed and analyzed in this paper; two for current climate (1979–1990, 1961–1990) and one for future climate (2041–2070). The simulation for the period 1979–1990 will be referred to as SM_NCEP and it is driven by the surface temperature from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data (Kalnay et al., 1996). The snow cover data is taken from the gridded North American snow depth database (Brown et al., 2003), which was produced by applying the snow depth analysis scheme developed by Brasnett (1999) to generate a 0.3° latitude/longitude grid of daily and monthly mean snow depth and corresponding estimated water equivalent for North America. The NCEP reanalyses are available every 12 hours with an initial horizontal grid-point spacing of 2.5° × 2.5° at 12 vertical levels. These data were linearly interpolated onto the 45 km × 45 km grids of the computational domain. The surface air temperature and snow cover data from the 30-year current (1961–1990) and projected future (2041–2070) climate simulations, under IS92a SRES scenario, with the third-generation of the CRCM (Caya and Laprise, 1999; Laprise et al., 2003), are used in the second and third simulations, respectively. These simulations will be referred to as SM_CRCM1 and SM_CRCM2. The CRCM simulations were performed with a 45-km (true at 60°N) horizontal gridpoint spacing and 29 unevenly spaced vertical levels over a domain covering whole of North America and adjoining oceans, which is the largest domain ever used for a regional climate change simulation. The CRCM performs dynamical downscaling of the second generation Canadian Coupled General Circulation Model (CGCM2) simulated data to produce climate projections at the regional scale. This version of the CRCM used a simple soil model where the effective heat capacity of the soil, taking into account the contribution due to snow mass, is defined as the weight average of the contribution for bare (snow free) soil and that snow-covered soil, the weighting factor being the fractional snow cover in the relevant Gaussian
grid square (McFarlane et al., 1992). The future climate corresponds to IS92a SRES scenario that specifies effective CO$_2$ concentration increasing at 1% per year (Leggett et al., 1992). The SM_CRCM1 run is the reference to which the future soil thermal regime projections, SM_CRCM2, will be compared.

2.3. Initialization of the soil model

The initial profile of soil temperature is determined by iteratively running the model from arbitrary conditions, taken as vertically uniform profile set at the mean annual surface temperature value. One year of climatological daily values of surface air temperature and snow depth for the studied periods were used as boundary conditions. The model is run until equilibrium soil temperature conditions are achieved, i.e. the difference in annual averaged temperature at all levels, between the two successive years, is less than 0.001°C.

3. Verification of input data and simulated temperature profiles

The ability to project the soil thermal regime under altered climate depends in part on the ability of the model to reproduce current conditions. Investigation of biases in the current climate simulations and corresponding soil thermal regime provides insight to interpreting projections of soil thermal conditions for future climate. Therefore, in this section, verification of the SM_NCEP and SM_CRCM1 simulations are performed, by comparing the simulated soil temperature at various depths with some locally measured values. As the soil model simulation is directly influenced by the boundary conditions, it is useful to verify the input data used for SM_NCEP and SM_CRCM1 simulations; this is presented before the verification of the simulated soil temperatures.

In Fig. 2, CRCM-simulated and NCEP/NCAR reanalysis mean annual screen
temperatures, for the period 1961–1990, are compared with the monthly mean gridded analysis from the Climatic Research Unit (CRU) data set (Mitchell and Jones, 2005) produced from station data. NCEP/NCAR mean annual screen temperatures have a cold bias over most of the domain, with larger biases for winter season (Fig. 3). Comparing CRCM-simulated mean annual screen temperatures with that from CRU, one could notice a warm bias, with values up to 6°C, between 50° and 60°N latitudes; for the winter season, the warm bias exceeds 6°C across central and eastern Canada. North of 60°N latitude the warm bias is found to decrease rapidly and across the Canadian Arctic Archipelago the model is found to be too cold by 2–3°C. Overall, the model performance for surface air temperature is much better for the summer season, with biases less then 2°C over most of the domain, as noted by Plummer et al. (2005),

Figure 4 shows CRCM-simulated and Brown et al. (2003) analyzed winter mean snow cover for the period 1979–1990 since the snow analysis is only available for this period. A more detailed description of the CRCM-simulated snow cover can be found in Caya and Laprise, 1999. Compared with analyzed data, in general CRCM underestimates snow cover over most of the domain. This was also noted in previous studies such as that of Frigon et al. (2002) with a CRCM simulation performed over the Quebec/Labrador territory. Due to a warm bias in fall air temperature, CRCM produces liquid precipitation rather than snow in this season and thus produces thinner annual snow cover. This can introduce additional bias considering the study of sensibility of the presence of snow on the soil temperature done in the chapter 2.2.

The above verification of input data reveals biases and inconsistencies between various datasets. The SM_NCEP and SM_CRCM1 soil temperature profiles are next compared with in-situ data provided by “Centre d’études nordiques ” (Allard 2005, personal communication), for three towns, Salluit (62.197°N, 75.646°W), Kangiqsualujuaq (58.709°N, 65.92°W) and Tasiujaq (58.67°N, 69.95°W), in
Northern Quebec (Fig. 1). The choice of these towns was based on data availability and most importantly their location: Salluit lies in the continuous permafrost zone, Kangiqsualuujuaq in discontinuous permafrost zone and Tasiujaq in the zone of sporadic permafrost. For each town, the measurements are available from more than one station. These measured soil temperatures from different stations in the same town vary due to the heterogeneous nature of soil properties and topography. The simulated soil profiles (SM_NCEP and SM_CRCM1) are compared with those observed for a summer and a winter day (Fig. 5). It should be noted that the comparisons are not done for the same day for all three locations as data is not available for the same dates. Comparing SM_CRCM1 temperature profiles with observations for any particular day in a year does not represent a valid comparison since SM_CRCM1 is driven by a GCM (CGCM2) at its boundaries. GCMs can be judged only by the quality of the climate statistics and same is true for RCMs driven by GCMs. For these above-mentioned reasons, an ensemble of SM_CRCM1 profiles, for the same date from 30 simulated years, are shown. The diurnal fluctuations in the surface temperature are captured by the near-surface soil layers, while the deeper layers capture annual fluctuations in the surface temperature. For deeper layers, the SM_CRCM1 profiles agree reasonably well with the observations, while the SM_NCEP soil is colder than observed. Figure 6(a) comparing NCEP/NCAR and CRCM climatological screen temperatures with that of CRU, for the period 1961–1990, for the three towns show that the NCEP screen temperatures for the three locations have a cold bias for all seasons, with biggest winter bias for Salluit. On the other hand, CRCM temperatures have a cold bias in winter and spring, while the summer and fall seasons have a warm bias. As a result, the CRCM mean annual screen temperatures are closer to that of CRU and hence the closeness of SM_CRCM1 profiles to that observed at deeper layers. The SM_CRCM1 soil temperature near the surface for the summer day is warmer than that of SM_NCEP; this is believed to be due to the warm bias in the driving CRCM surface temperature
Simulated (both SM_CRCM1 and SM_NCEP) near surface temperature for winter for Salluit is very close to observations. Figure 6(b) presents CRCM-simulated and analyzed (Brown et al., 2003) climatological snow water equivalent for the three locations for the period 1979–1990. As mentioned before, CRCM snow onset is delayed for all three locations and CRCM underestimates winter snow cover for Tasiujaq. In spite of the reduced snow cover and the cold bias in the winter driving data, the simulated near surface temperatures for Kangiqsualuujuaq and Tasiujaq are warmer than observed. It is not easy to explain these differences in winter due to the complex response of soil temperatures at the surface to snow cover that insulates the soil from the cold atmosphere. However, it should be noted that the sites Kangiqsualuujuaq and Tasiujaq are characterized by blowing snow. In the absence of an insulating snow cover, soil temperatures at the surface could locally fall few degrees in cold weather and could partly explain the differences between measured and simulated temperatures at the surface.

Next a simulation for Salluit is performed with NCEP/NCAR surface temperature corrected for the biases, to see whether the deeper layer temperatures can be improved. The NCEP/NCAR screen temperature biases with respect to CRU for Salluit vary with season (Fig. 6(a)), with maximal cold bias in the winter (i.e. average winter bias of 6.2°C for Salluit). Assuming that the same biases will be present for surface temperature, the NCEP/NCAR surface temperatures were corrected and then used to drive the model. Simulated and observed profiles for Salluit for the same summer and winter days as in Fig. 5 are presented in Figure 7(a). The model driven by the corrected NCEP/NCAR surface temperature does a reasonably good job in reproducing the observed temperature profiles, especially for the deeper layers. The soil temperatures for the deeper layers are now in better agreement with those observed, much improved compared to Fig. 5(a). Comparison between simulated and observed soil temperature at 4m below surface, for Salluit, also suggests good agreement (Fig. 7(b)), with a correlation coefficient of 0.89, despite the fact that the
model soil temperature is representing a (45×45) km2 area, unlike a thermistor point measurement. The above experiment suggests that the soil model does a reasonably good job when driven by good boundary conditions.

Distribution of simulated permafrost zones and average ALT are presented in Fig. 8 for both SM_NCEP (top panel) and SM_CRCM1 (middle panel) for the periods 1979–1990 and 1961–1990, respectively. Also shown superposed are the lines defining different permafrost regions from the International Permafrost Association (IPA) map (Brown et al., 1997). The different zones correspond to continuous, extensive discontinuous and sporadic permafrost zones, respectively from north to south. The IPA map defines these permafrost zones explicitly in terms of spatial extent and accordingly continuous, extensive discontinuous and sporadic discontinuous patches have >90%, 50–90%, and 10–50% of the area with permafrost (Heginbottom et al., 1993; Brown et al., 1997). The zone with less than 10% of the area with permafrost, called the zone of isolated permafrost (Heginbottom et al., 1993), isn’t shown in the figure. In Fig. 8, regions with no simulated permafrost are shown in red. SM_NCEP simulation captures most of the permafrost regions, except for some parts of the sporadic discontinuous patches of permafrost zones. SM_CRCM1 captures the entire continuous and discontinuous permafrost zones in Quebec province and to the south of Hudson Bay. However, in the western part of the domain, the model captures continuous permafrost zone and parts of the discontinuous permafrost zone. In general, SM_CRCM1 failed to capture regions with permafrost extent less than 50% in area and is believed to be partly due to the model resolution and the warm bias in the driving CRCM data. The model resolution is 45km × 45 km and the model simulated temperatures are average values for such tiles. Had the model resolution been finer and with suitable fields of soil properties, it may have been possible to identify areas within this 45 km × 45 km box with permafrost. To test this hypothesis, we identify the “quasi” permafrost region (Fig. 8(c)), i.e. the region where the annual maximum temperature lies between 0°C and
1°C. One could notice from this figure better coverage of permafrost regions. The warm bias in the CRCM air temperature south of 60°N latitude (Plummer et al., 2005) could also be partly responsible for the model’s inability to capture part of the sporadic permafrost regions. However, the ALT gradients follow the spatial patterns of different permafrost zones and the SM_CRCM1 ALT for some particulars points in the continuous permafrost region for current climate is generally in agreement with observed values in these points (figure not shown).

The verification above suggests that the soil model is capable of simulating soil temperature reasonably well when driven by good driving data. Though the SM_CRCM1 profiles are close to observations for deeper layers, differences exist for surface layers and hence the SM_CRCM1 has difficulty in capturing the sporadic permafrost zones.

4. Climate change

In the previous section we looked at the ability of the SM_CRCM1 to simulate current conditions, particularly soil temperature profiles and permafrost distribution since SM_CRCM1 is the reference to which the future soil thermal regime projections, SM_CRCM2, will be compared. The future projections for the period 2040–2070 correspond to the IS92a scenario. Simulated changes in the soil thermal regime are evaluated here as differences between two soil model runs driven by CRCM control and scenario climates. This is a common method for evaluating simulated climate change, which is based on the assumption that systematic biases are similar in the two model runs (IPCC, 2001). Using a similar approach, changes in the driving data are also analyzed.

4.1 Driving data
Changes (increase/decrease) to the mean annual forcing fields (surface air temperature and snow cover), for the period 2041-2070 with respect to 1961-1990, are shown in Fig. 9. All over the domain, increase in mean annual surface air temperature can be noted, with the average annual surface air temperature increasing by 5°C and above for the north-western part of the domain (top panel). The increase in winter temperatures is more than that during summer (figure not shown). Several other studies also have shown similar trends, with higher increase in winter temperatures than for the summer ones (e.g. Plummer et al., 2005). Assuming the same propagation of the model biases in the snow production, slight decrease in the snow cover (0–10%) is noted all over the domain except for northern Quebec and some regions of Baffin Island, where the snow cover increases slightly. Thus compared with temperature, the snow cover doesn’t change much as expected (Fig. 9(b)). Increased air temperature leads to shorter snowing periods and hence thinner snow cover. At the same time increased air temperature increases the water holding capacity of the atmosphere, thereby leading to more precipitation. The combined effect of the above two would therefore result in only slight changes in snow cover.

Nonparametric statistical methods are employed here to investigate temporal changes in the driving data. These methods are generally considered to be more robust and are less affected by the presence of outliers and/or issues of non-normality (Lazante, 1996). Mann-Kendall’s test (Kendall, 1975) is used to examine statistical significance of time-trend and Sen’s method (Sen, 1968) to obtain estimates of the magnitude of trend. Since the presence of serial correlation can complicate the identification of true trends, the data is de-correlated (see Zhang et al., 2000) before applying both Sen’s and Mann Kendall’s methods. We assume 90% confidence level to assess the significance of time trend throughout the study.

The top panels of Figs. 10(a) and 10(b) show estimates of the magnitude of monotonic trend in the driving data (surface air temperature and snow cover) for 30
year periods of current and future climates respectively. The trends for current and future climates are analyzed separately. Also shown are the p-values from the Mann-Kendall (Kendall, 1975) test statistic in the bottom panels of Figs 10(a) and 10(b). Regions with p-values ≤ 0.1 have statistically significant trends (positive or negative). Statistically nonsignificant positive trends are observed for the southern part of the domain for current climate, except for a small region on the south-west corner of the domain. Some regions of the permafrost zone did have some significant positive trends. However, for future climate, statistically significant positive trend in surface air temperature is observed all over the domain. Also, the magnitude of trend is much greater for future climate as compared with that for current climate.

In general, statistically nonsignificant positive and negative trends in snow water equivalent are observed for the permafrost regions for both current and future climate. Therefore for the permafrost regions, of the two driving fields, significant trends are noticed only for the surface air temperature. For the seasonally frozen southern part of the domain, statistically significant negative trends in snow cover is observed for future climate. However, for current climate, no significant trends are simulated.

4.2 Soil thermal regime

The top, middle and bottom panels of the Figure 11 shows estimated trends in the thawing and freezing indices at the surface and in the soil temperature at 20 cm depth, simulated by the soil model, for both current and future climates. Freezing and thawing indices (in degree-days) are defined as the annual accumulated departures of the air temperatures below and above 0°C. The same nonparametric methods (Mann-Kendall’s and Sen’s methods) described in the previous section are used here. Like most climate models, CRCM projects some summer warming, but larger changes are projected for winter, spring and autumn. This is reflected in the large statistically
significant negative trends in the freezing index for future climate (Figs. 11(a) and 12(a)). The thawing index also shows statistically significant positive trend (Figs. 11(b) and 12(b)) almost all over the domain for future climate. These trends are much higher in magnitude compared to the trends for current climate. Statistically significant increase in the soil temperature over most part of the domain can be noted from Figs. 11(c) and 12(c). The spatial patterns in Fig. 11(c) generally match with the spatial distribution of trends in the surface temperature field shown in the right top panel of Fig 10(a).

Figure 13 shows simulated changes in the maximal summer (JJA) and minimal winter (DJF) soil temperatures at 20 cm depth. Changes in the maximal summer temperature range from 1°C in the south to 4°C in the north of the region, while changes in the minimal winter temperature are much bigger ranging from 2°C in the south to 8°C in the north. These changes are in response to changes in surface air temperature. Changes in mean monthly soil temperature at 20 cm depth are shown in Figure 14. The spatial distribution of these changes are similar to that for the surface air temperature (figure not shown). As expected, big changes of up to 8°C are simulated for the northern parts of the domain for the winter months (January and February). However, the maximal change in the mean monthly soil temperature is simulated for the months of June and July and differ from the trends noted with the surface air temperature. This is believed to be primarily associated with the snow cover changes for the months of June and July. According to Figure 15, the largest changes in snow cover will occur in June and July over the northern part of the domain, where snow-melt is accelerated by increased temperatures. Namely, summer temperature increases, as a result snow melt is increased and therefore snow insulation is reduced. Because of the above, the soil temperature increases in future during those months.

We analyze the 30-year average annual mean, minimal and maximal temperature profiles and their trends, upto 20 m depth, for the four permafrost zones
(continuous, discontinuous, sporadic and isolated permafrost zones) defined by the IPA map, for current and future climates. There is very little variation in the annual mean temperature values with depth (Fig. 16(a)). Clear increase in soil temperature can be noted at all depths of the annual mean temperature profiles for the four permafrost zones. For continuous permafrost region, the average annual mean temperature increases by 4°C, and by 2°–3°C for the rest of the permafrost zones. The average minimal and maximal temperature profiles (Figs. 16(b) and 16(c)) also show an increase at all depths for future climate. However, for the near-surface layers, the differences are large for the minimal temperature compared with the maximal temperature. For both current and future climate, seasonal variability of soil temperature decrease with increasing depth in the ground, with depth of zero annual amplitude at about 20 m.

Figure 17 shows trends (in 10^{-2}°C/year) in the mean annual, minimal and maximal temperature values, for the same four regions defined above, from surface upto 20 m deep for both current and future climates. Trends significant at the 90% confidence level are shown with filled circles. The differences between the future and current trends in the mean annual, minimal and maximal temperatures decrease with depth for all four zones. The strongest warming in the mean annual temperatures occur in the upper layers, with values in the range of 0.03–0.04 °C/year for future climate. For current climate the trends in the mean annual temperatures are mostly nonsignificant for the sporadic and isolated permafrost zones. The trends in the mean annual temperature at 20 m depth are much smaller for current and future climates, but significant for all zones for future climate. At the near-surface layers, the trends associated with the minimal temperatures are higher than that of the maximal temperatures (0.05°C – 0.1°C /year vs. 0.02°C – 0.03°C /year) for future climate. For the near-surface layers slight cooling trends in the maximal temperature can be noticed for current climate from the figures. In general, the trends in the minimal and
maximal temperatures for future climate are bigger than the trends for current climate.

Fig. 18 shows the simulated average ALT for the continuous permafrost region for future scenario. It is widely documented that the principal control on ALT is summer air temperature, which is essentially represented by the annual thawing index. Zhang et al., (2005) argue that while most climate models project some summer warming, to which the ALT response may seem clear, larger changes are projected for winter, spring and autumn, to which the ALT response is less certain. CRCM also projects bigger increases in winter temperatures as compared with those of summer. Still, differences between the simulated future (Fig. 18) and current (Fig. 8(b)) ALT for the continuous permafrost region suggest that the active layer will grow from 80 cm to more than 500 cm, or, by 40 to 80%. But the increase of active layer depth is not uniform either in time or geographically as relatively cold/warm periods associated with natural fluctuations in surface temperature and precipitation are superimposed on the background warming trend (ACIA, 2005).

5. Summary and Conclusions

The soil thermal regime for north-eastern Canada for current (1961–1990) and future (2041–2070) climates are simulated at 45 km x 45 km resolution using a one-dimensional heat conduction model (Goodrich, 1976) driven by the surface air temperature and snow depth from the CRCM transient climate change simulations. Biases in the model are assessed by comparing the simulated soil temperature profiles with observed data. The soil model does a good job in simulating the temperature profiles, when driven by suitable boundary conditions. The model driven by CRCM, show some warm biases and this is linked to the warm biases in the CRCM surface air temperature.

Simulated changes in the soil thermal regime are evaluated as differences
between the current and future runs driven by CRCM control and scenario climates respectively. Results suggest significant positive trends in the annual mean, maximal and minimal near-surface soil temperatures, with the mean annual near-surface soil temperature increasing by 4°C for the continuous permafrost zone and by 2–3°C for the rest of the permafrost zones in North Eastern Canada. Trend analysis shows strongest warming in the annual mean temperatures occurring in the upper layers, with values in the range of 0.03–0.04 °C/year for future climate. The future trends in the mean annual temperature for deeper layers are much smaller, but significant, for all permafrost regions. At the near-surface layers, the trends associated with the minimal temperatures are higher than that of the maximal temperatures (0.05°C – 0.1°C/year vs. 0.02°C – 0.03°C/year) for future climate. This is in response to the CRCM projected larger temperature changes for winter than for summer periods. As a result, a significant increase in the ALT is also projected for the period 2041–2070, with ALT varying non-uniformly from 40 to 80% in the continuous permafrost region.

Despite the simplicity of the model used here and the biases in the driving data, the study does provide an important insight into the effect of warming on the soil thermal regime for northeastern Canada. It would be interesting to perform the experiments with a more physically based model that would include water movement and lateral transport of heat. The quality of the soil model simulation depends a great extent on the driving data and it is necessary to have good driving data at the boundaries. The data used in this study came from the third generation of the CRCM, which had biases in the surface air temperature and snow cover primarily caused by the radiation scheme and the simple land surface scheme used in this version of the model. A new version with more physically based land surface scheme and better radiation scheme is being implemented at the moment and we plan to repeat the analysis when this new data becomes available. Also equally important are the soil properties. High resolution soil maps and better dataset of soil properties can
certainly improve the simulations results.
Acknowledgements

The authors would like to thank the Ouranos Climate Simulations Team for supplying daily output from their CRCM climate change simulations. We also acknowledge Dr. Michel Allard for useful discussions and for making available the observation datasets. This research was funded by the CRCM network.
Figure 1. Geographic extent of the computational domain with topographic height (in meters).
Figure 2. Biases in the mean annual screen temperature for (a) NCEP/NCAR reanalysis and (b) CRCM simulation driven by CGCM2 compared with CRU analysis of surface observations, for the period 1961–1990.
Figure 3. Biases in the (a) winter and (b) summer screen temperature for NCEP/NCAR reanalysis compared with CRU analysis of surface observations, for the period 1961–1990.
Figure 4. (a) CRCM simulated and (b) analyzed (Brown et al., 2003) mean winter (DJF) snow water equivalent (kg/m2) for the period 1979-1990 and (c) their differences.
Figure 5. Simulated (SM_NCEP and SM_CRCM1) and observed temperature profiles for a typical winter (left panels) and summer (right panels) day for (a) Salluit (SAL), (b) Kangiqsualuujuaq (KGSJLJQ) and (c) Tasiujaq (TSJQ). The days correspond to 31 January and 19 August 1988 for Salluit, 19 February and 20 August 1990 for Kangiqsualuujuaq and 23 February and 20 August 1990 for Tasiujaq.
Figure 6. (a) Screen temperature (in °C) and (b) snow water depth (in m) for Salluit (left panel), Kangiqsualujuaq (middle panel) and Tasiujaq (right panel).
Figure 7. (a) Corrected SM_NCEP (black) and observed (colored) soil temperature profiles for Salluit for 31 January 1988 and 19 August 1988 day and (b) scatter plot of simulated vs observed soil temperature at 400 cm below surface.
Figure 8. (a) SM_NCEP and (b) SM_CRCM1 simulated active layer thickness (in m) for the periods 1979–1990 and 1961–1990, respectively. Shown superposed are the lines delineating continuous, discontinuous and sporadic permafrost zones taken from the IPA map (Brown et al., 2001). The panel (c) is the same as (b), but including the “quasi” permafrost region.
Figure 9. Projected changes simulated by CRCM driven by CGCM2 for (a) annual average surface air temperature (in °C) and (b) winter (DJF) snow water equivalent (in kg/m\(^2\)) for future IS92a SRES scenario (2041–2070) compared with that for current climate (1961–1990).
Figure 10. Estimated trends (top rows) and p-values (bottom rows) in (a) surface air temperature (in °C/year) and (b) snow water equivalent (in kg/m²) for current (left panels) and future (right panels) climates.
Figure 11. Estimated trends in (a) freezing and (b) thawing indices (degree days/year) and (c) in the simulated soil temperature (in °C/year) at 20 cm depth for current (left panels) and future (right panels) climates.
Figure 12. p-values for (a) freezing and (b) thawing indices and (c) for simulated soil temperature at 20 cm depth for current (left panels) and future (right panels) climates.
Figure 13. Changes in the (a) winter (DJF) minimum and (b) summer (JJA) maximum soil temperatures (in °C) at 20 cm depth for the future climate compared with that of current climate.
Figure 14. Changes in mean monthly soil temperature (in °C) at 20 cm depth for the period 2041–2070 compared to the period 1961–1990.
Figure 15. Changes in mean monthly snow water equivalent (in kg/m2) for the period 2041-2070 compared to the period 1961-1990.
Figure 16. Average annual (a) mean (b) minimum and (c) maximum temperature profiles for current (solid lines) and future (dashed lines) climates for continuous, discontinuous, sporadic and isolated permafrost regions defined by the IPA map.
Figure 17. Estimated trends (10^{-2}°C/year) in the average (a) annual mean (b) minimum and (c) maximum temperature profiles for current (solid lines) and future (dashed lines) climates for continuous (left column), discontinuous (second column), sporadic (third column) and isolated (fourth column) permafrost regions defined by the IPA map. Filled (empty) circles suggest significant (nonsignificant) trends at 90% confidence level.
Figure 18. SM_CRCM2 simulated ALT (in m) for future scenario (2041–2070), for the continuous permafrost region. Shown superposed are the lines delineating continuous, discontinuous and sporadic permafrost zones taken from the IPA map (Brown et al., 2001).
CONCLUSIONS

Le profil de la température dans le sol est un paramètre intéressant pour étudier les changements climatiques, parce qu'il intègre tous les processus qui se produisent au-dessus de la surface, tels que la température de l'air, la précipitation, la neige, la végétation, ainsi qu'à la surface et sous la surface comme les effets du type de sol, d'humidité du sol, et les processus de gel et de dégel (Oelke et Zhang, 2004). Pendant le vingtième siècle, on a observé une hausse de la température de l'air aux hautes latitudes et la plupart des études suggèrent que la même tendance continuera à l'avenir, en réponse aux changements anthropiques du climat (ACIA, 2005). Ces augmentations de la température de l’air suggèrent l’approfondissement de la couche active et la dégradation du pergélisol associée, ce qui peut entraîner des effets néfastes sur les systèmes socio-économiques et environnementaux.

Les modèles numériques sont devenus, avec les progrès rapides de l’informatique, de véritables outils intégrateurs, permettant d’étudier les phénomènes les plus complexes. Un des avantages indéniables de ces modèles, c’est qu’ils constituent de véritables laboratoires où un grand nombre d’expériences peuvent être réalisées dans un intervalle de temps relativement court. Toutefois, l’interprétation que l’on fera des sorties du modèle sera directement fonction de l’état des connaissances pratiques sur le phénomène modélisé. Le modèle utilisé dans le cadre de cette étude a permis de faire progresser les connaissances sur le régime thermique du sol et plus particulièrement, sur la dynamique du pergélisol.

Nous avons donc, dans un premier temps, décrit le modèle de sol TONE avec
lequel nous avions l’intention de simuler le régime thermique du sol. Nous avons montré, entre autres, la structure du modèle et la manière dont est résolue l’équation de conductivité de la chaleur dans le modèle. Par la suite, nous avons comparé la solution analytique avec la solution numérique et une très bonne concordance a été obtenue. Ceci nous assure de bonnes simulations du modèle TONE. Avant la présentation des résultats, nous avons effectué quelques tests de sensibilité afin d’évaluer l’influence des paramètres de forçages météorologiques et d’autres géophysiques sur la température du sol. De façon générale, on peut dire que le modèle a été capable de bien simuler une importante propriété de la neige, son pouvoir d’isolation thermique, et qu’il a bien réagi aux changements d’épaisseur de neige. Également, nous avons montré que le modèle simule adéquatement l’influence des différents types de sol sur le régime thermique du sol. En somme, ces expériences de la sensibilité du modèle nous ont permis d’espérer que ce modèle pourrait bien servir dans l’étude du régime thermique du sol.

Le but principal de ce mémoire a été d’étudier les changements climatiques sur le régime thermique de sol, particulièrement sur la dynamique du pergélisol, en utilisant le modèle TONE. L’étude présentée dans ce mémoire est effectuée sur le nord-est du Canada. Le domaine contient chacune des quatre différentes régions du pergélisol définies par Heiginbottom et al. (1993). Les changements sur le régime thermique du sol ont été simulés pour le climat actuel (1961-1990) aussi bien que pour le climat futur (2041-2070), correspondant au scénario IS92a du SRES. La température de l’air en surface et l’épaisseur de neige sont tirées du modèle régional canadien du climat, MRCC.

Les températures du sol simulées pour le climat actuel sont comparées avec celles des trois stations situées au Nord du Québec et ont montré une bonne concordance avec les données observées. Les différences sont plus grandes pour les couches supérieures et sont produites à cause des biais de la température du MRCC.
trouvés pour la région et la période simulée, lorsque les températures des couches plus profondes que 10 m ne diffèrent presque pas des températures observées. Au contraire, les températures du sol obtenues en utilisant la température de la réanalyse du NCEP/NCAR et la couverture de neige de Brown et al. (2003) montrent, en général, un biais beaucoup plus grand en comparaison avec celles du MRCC. La couche active moyenne, simulée avec les données du MRCC, varie de 1m au nord à 10m au sud de la région du pergélisol, pour la période de 1961 à 1990, mais les variations ne sont pas uniformes, ni dans le temps ni géographiquement. Les valeurs de l’épaisseur de la couche limite sont comparées avec les données observées dans certains sites et elles ont données une bonne concordance.

Dans le cadre des projections des changements climatiques, la hausse de la température de la surface, plus forte en hiver qu’en été et plus grande au nord qu’au sud de la région, produira une tendance similaire de la température du sol. Par exemple, les projections suggèrent une augmentation de la température du sol à 0.2m, en hiver, de 2°C à plus de 8°C et de plus petits changements (de 1°C à 4°C) dans la température du sol d’été. Ces changements sont en général en réponse aux changements de la température de l’air. Les changements de la couverture de neige provoqueront une augmentation de la température du sol aux couches supérieures, dans les mois de juin et de juillet. L’analyse de tendance de la température moyenne annuelle montre un plus fort réchauffement pour le climat futur pour les couches supérieures, avec des valeurs de 0.03 à 0.04°C/année, et des tendances plus petites, mais significatives, pour les couches plus profondes.

La hausse de la température du sol sera suivie d’un approfondissement de la couche active de 40% à 80% par rapport à celle d’aujourd’hui. Également, les résultats suggèrent la disparition totale du pergélisol dans les régions où il y a présentement le pergélisol discontinu, sporadique et isolé. Par exemple, le pergélisol disparaîtra sur une distance de 330km vers le sud de la Baie d’Hudson. En regardant
les effets néfastes que des bouleversements comme ceux-ci peuvent provoquer, il faut commencer à se préparer humainement, environnementalement, et économiquement à faire face à ces changements.

Cette recherche constitue une étape importante en ce qui concerne l’étude des effets de l’approfondissement de l’épaisseur active de couche et du pergélisol. Quelques modifications pourraient améliorer les résultats dans le futur. Par exemple, nous suggérons de prescrire les flux du bilan d’énergie en surface au lieu de la température de l’air comme conditions à la limite supérieure. L’incorporation du modèle de pergélisol dans un schéma de surface peut inclure différentes rétroactions dans le modèle (i.e. rétroaction des flux du bilan d’énergie en surface ou l’influence de la libération du méthane dans l’atmosphère à cause de la dégradation du pergélisol), malgré le fait que les modèles « offline » ont des avantages, en considérant la résolution verticale plus élevée. De plus, il faudrait répéter les simulations avec les données de la nouvelle version du MRCC, qui a déjà été testée et a donné de meilleurs résultats pour plusieurs variables météorologiques. Par la suite, il faudrait améliorer le choix des constantes utilisées dans le modèle telles que les valeurs de conductivité thermique ou de capacité calorifique. Finalement, nous suggérons de représenter les changements de phase du modèle TONE de manière plus physique.
RÉFÉRENCES

Allard, M., Soil temperature data, Université Laval, Centre d’étude nordiques, personal communication, 2005.

Borenstein, S., Published on Thursday, July 31, 2003 by the Knight Ridder Newspapers.

